Deep Learning and Machine Learning Techniques for Analyzing Travelers' Online Reviews

Author:

Mbunge Elliot1,Muchemwa Benhildah1

Affiliation:

1. University of Eswatini, Eswatini

Abstract

Social media platforms play a tremendous role in the tourism and hospitality industry. Social media platforms are increasingly becoming a source of information. The complexity and increasing size of tourists' online data make it difficult to extract meaningful insights using traditional models. Therefore, this scoping and comprehensive review aimed to analyze machine learning and deep learning models applied to model tourism data. The study revealed that deep learning and machine learning models are used for forecasting and predicting tourism demand using data from search query data, Google trends, and social media platforms. Also, the study revealed that data-driven models can assist managers and policymakers in mapping and segmenting tourism hotspots and attractions and predicting revenue that is likely to be generated, exploring targeting marketing, segmenting tourists based on their spending patterns, lifestyle, and age group. However, hybrid deep learning models such as inceptionV3, MobilenetsV3, and YOLOv4 are not yet explored in the tourism and hospitality industry.

Publisher

IGI Global

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3