Breast Cancer Diagnosis With Mammography

Author:

Baâzaoui Abir1ORCID,Barhoumi Walid2ORCID

Affiliation:

1. SIIVA, LIMTIC Laboratory, Institut Supérieur d'Informatique El Manar, Université de Tunis El Manar, Tunisia

2. Ecole Nationale d'Ingénieurs de Carthage, Université de Carthage, Tunisia & SIIVA, LIMTIC Laboratory, Institut Supérieur d'Informatique El Manar, Université de Tunis El Manar, Tunisia

Abstract

Breast cancer, which is the second-most common and leading cause of cancer death among women, has witnessed growing interest in the two last decades. Fortunately, its early detection is the most effective way to detect and diagnose breast cancer. Although mammography is the gold standard for screening, its difficult interpretation leads to an increase in missed cancers and misinterpreted non-cancerous lesion rates. Therefore, computer-aided diagnosis (CAD) systems can be a great helpful tool for assisting radiologists in mammogram interpretation. Nonetheless, these systems are limited by their black-box outputs, which decreases the radiologists' confidence. To circumvent this limit, content-based mammogram retrieval (CBMR) is used as an alternative to traditional CAD systems. Herein, authors systematically review the state-of-the-art on mammography-based breast cancer CAD methods, while focusing on recent advances in CBMR methods. In order to have a complete review, mammography imaging principles and its correlation with breast anatomy are also discussed.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3