A Novel Machine Learning Algorithm for Cognitive Concept Elicitation by Cognitive Robots

Author:

Wang Yingxu1,Zatarain Omar A.1

Affiliation:

1. International Institute of Cognitive Informatics and Cognitive Computing (ICIC), Department of Electrical and Computer Engineering, Schulich School of Engineering and Hotchkiss Brain Institute, University of Calgary, Calgary, Canada

Abstract

Cognitive knowledge learning (CKL) is a fundamental methodology for cognitive robots and machine learning. Traditional technologies for machine learning deal with object identification, cluster classification, pattern recognition, functional regression and behavior acquisition. A new category of CKL is presented in this paper embodied by the Algorithm of Cognitive Concept Elicitation (ACCE). Formal concepts are autonomously generated based on collective intension (attributes) and extension (objects) elicited from informal descriptions in dictionaries. A system of formal concept generation by cognitive robots is implemented based on the ACCE algorithm. Experiments on machine learning for knowledge acquisition reveal that a cognitive robot is able to learn synergized concepts in human knowledge in order to build its own knowledge base. The machine–generated knowledge base demonstrates that the ACCE algorithm can outperform human knowledge expressions in terms of relevance, accuracy, quantification and cohesiveness.

Publisher

IGI Global

Reference50 articles.

1. Outline for a theory of intelligence

2. Berkeley, B. (1954). Principles of Human Knowledge (A.D. Lindsay ed.). (originally published 1710)

3. Cambridge English Online Dictionary. (2016). Cambridge University Press.

4. Three models for the description of language

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A methodology for designing knowledge-based systems and applications;Applications of Computational Intelligence in Multi-Disciplinary Research;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3