Linked Data as Integrating Technology for Industrial Data

Author:

Graube Markus1,Pfeffer Johannes1,Ziegler Jens1,Urbas Leon1

Affiliation:

1. Technische Universität Dresden, Germany

Abstract

In a globalised world the process industry faces challenges regarding data management. Rising demands for agility and rapid shortening of innovation cycles have lead to project-based collaborations. Highly specialised small and medium enterprises are forming “virtual companies” for their mutual benefit. However, today’s industrial data structures are very heterogeneous, complicating collaborative work and hindering the flow of data between stakeholders from different domains. Existing solutions are too rigid and potentially cumbersome. A broad gap still exists between the need of virtual companies to share data from mixed sources in a controlled way and the technologies available. The authors’ approach uses semantic web technologies to represent industrial data in a generic way. Major advantages in comparison to traditional approaches arise from the inherent merging abilities and the extensibility of Linked Data. Distributed information spaces from different domains can be condensed into an interlinked cloud. Existing data can be integrated either on-the-fly using appropriate adapters or by complete migration. Furthermore, operations from graph theory can be performed on the Linked Data networks to generate aggregated views. This article discusses a set of proven web technologies for cloud-driven industrial data sharing in virtual companies and presents first results.

Publisher

IGI Global

Subject

Computer Networks and Communications,Hardware and Architecture

Reference41 articles.

1. W3C. (2004). Resource Description Framework (RDF). Retrieved from http://www.w3.org/RDF/

2. W3C. (2009). About W3C. Retrieved from http://www.w3.org/Consortium/

3. W3C. (2011). Linking open data. Retrieved from http://esw.w3.org/SweoIG/TaskForces/CommunityProjects/LinkingOpenData

4. Semantic Web and the Linked Data Enterprise

5. AT&T Knowledge Ventures. (2008). Collaboration across borders. Retrieved from http://www.corp.att.com/emea/docs/s5_collaboration_eng.pdf

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Computational Fluid Dynamics;Kirk‐Othmer Encyclopedia of Chemical Technology;2022-12-16

2. A Primer on the Factories of the Future;Sensors;2022-08-04

3. A digital twin-concept for smart process equipment assemblies supporting process validation in modular plants;Computer Aided Chemical Engineering;2022

4. How Industry 4.0 Can Benefit From Semantic Web Technologies and Artefacts;International Journal of Software Science and Computational Intelligence;2021-10

5. Data in Context: How Digital Transformation Can Support Human Reasoning in Cyber-Physical Production Systems;Future Internet;2021-06-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3