Electricity Consumption Data Analysis Using Various Outlier Detection Methods

Author:

Kaddour Sidi Mohammed1,Lehsaini Mohamed1

Affiliation:

1. University of Tlemcen, Algeria

Abstract

Nowadays, detecting abnormal power consumption behavior of householders has become a big concern in the smart energy field; overcoming this limitation will help in identifying efficient solutions to reduce power consumption. This paper proposes a new methodology for detecting abnormal energy consumption in residential buildings based on hourly readings of energy consumption and peak energy consumption. The proposition is implemented using three unsupervised outlier detection methods (isolation forest, one-class SVM, and k-means). The authors propose this solution to help residents in reducing operating costs by detecting consumption failures that cannot be detected easily. On the other hand, energy providers will have the access to detailed data about anomalies, faulty appliances, and houses with poor power control strategy in general, which will help in pinpointing overconsumption problems, thus enhancing human awareness and reducing energy consumption.

Publisher

IGI Global

Subject

Pharmacology (medical)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Simulation of Malfunctions in Home Appliances’ Power Consumption;Energies;2024-09-09

2. A Secure Power System Distributed State Estimation via a Consensus-Based Mechanism and a Cooperative Trust Management Strategy;IEEE Transactions on Industrial Informatics;2024-02

3. Power Consumption Behavior Analysis Method Based on Improved Clustering Algorithm of Big Data Technology;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2024

4. Privacy Protection of Cloud Computing Based on Strong Forward Security;International Journal of Cloud Applications and Computing;2023-06-01

5. User Consumption Behavior Recognition Based on SMOTE and Improved AdaBoost;International Journal of Software Science and Computational Intelligence;2022-12-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3