Affiliation:
1. National Technical University of Athens, Athens, Greece
Abstract
In order to manufacture parts with dimensions of nanometres, high–technology equipment is required. There is a demand to study nano-metric cutting mechanisms and phenomena appearing in this level. However, experiments are difficult to be realized, so computational methods are employed. Nano-scale cutting involves workpiece deformation in only a few atomic layers from the workpiece surface; at this scale the continuum theory cannot be used, so methods like finite elements are not sufficient. Molecular Dynamics is a method increasingly used for the simulation of nano-cutting. However, the computational cost required is quite high. In an effort to reduce the time of the analysis, high or extremely high cutting speeds are used in the models. In this paper an analysis is presented where cutting speed is studied and its influence on the chip morphology and workpiece surface is investigated, for nano-cutting modelling of Cu with diamond tools. The results indicate that cutting speed influences the outcome of the analysis and more attention should be paid to the selection of this parameter.
Subject
Mechanical Engineering,Mechanics of Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献