Exploring Fuzzy Association Rules in Semantic Network Enrichment Improvement of the Semantic Indexing Process

Author:

Mallat Souheyl1,Hkiri Emna2,Zrigui Mounir1

Affiliation:

1. Faculty of Science of Monastir, Tunisia

2. LATICE Laboratory, Tunisia

Abstract

In the aim of natural language processing applications improvement, we focus on statistical approach to semantic indexing for multilingual text documents based on conceptual network formalism. We propose to use this formalism as an indexing language to represent the descriptive concepts and their weighting. Our contribution is based on two steps. In the first step, we propose the extraction of index terms using the multilingual lexical resource EuroWordNet (EWN). In the second step, we pass from the representation of index terms to the representation of index concepts through conceptual network formalism. This network is generated using the EWN resource and pass by a classification step based on association rules modelOur proposed indexing approach can be applied to text documents in various languages. Next, we apply the same statistical process regardless of the language in order to extract the significant concepts and their associated weights. We prove that the proposed indexing approach provides encouraging results.

Publisher

IGI Global

Reference36 articles.

1. Mining association rules between sets of items in large databases

2. Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules in large databases. Proceedings of 20th International Conference on Very Large Data Bases, 487-499.

3. Baziz, M. (2005, Dec.). Indexation Conceptuelle Guidé par Ontolgie pour la Recherche d’Information. Thèse de Doctorat en Informatique de l’Université Paul Sabatier de Toulouse (Sciences).

4. Baziz, M., Boughane, M., & And Aussenac-Gilles, N. (2005). Conceptual Indexing Based on Document Content Representation. In Lecture Notes in Computer Science: Vol. 3507. Information Context, Nature, Impact, and Role, 5th International Conference on Conceptions of Library and Information Sciences, CoLIS 2005 (pp. 171–186). Springer.

5. Baziz, M., & Boughanem, M. (2004). The Use of Ontolmogyfor Semantic Representation of Documents. The 2nd Semantic Web and Information Retrieval Workshop (SWIR), 38-45.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3