Hybrid Fuzzy Neural Search Retrieval System

Author:

Ghnemat Rawan1,Shaout Adnan2

Affiliation:

1. Princess Sumaya University for Technology, Jordan

2. The University of Michigan – Dearborn, USA

Abstract

Search engines are crucial for information gathering systems (IGS). New challenges face search engines concerning automatic learning from user requests. In this paper, a new hybrid intelligent system is proposed to enhance the search process. Based on a Multilayer Fuzzy Inference System (MFIS), the first step is to implement a scalable system to relay logical rules in order to produce three classifications for search behavior, user profiles, and query characteristics from analysis of navigation log files. These three outputs from the MFIS are used as inputs for the second step, an Adaptive Neuro-Fuzzy Inference System (ANFIS). The training process of the ANFIS replaced the rules by adjusting the weights in order to find the most relevant result for the search query. This proposed system, called MFIS-ANFIS, is implemented as an experimental system. The system performance is evaluated using quantitative and comparative analysis. MFIS-ANFIS aimed to be the core of intelligent and reliable search process.

Publisher

IGI Global

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3