Affiliation:
1. Princess Sumaya University for Technology, Jordan
2. The University of Michigan – Dearborn, USA
Abstract
Search engines are crucial for information gathering systems (IGS). New challenges face search engines concerning automatic learning from user requests. In this paper, a new hybrid intelligent system is proposed to enhance the search process. Based on a Multilayer Fuzzy Inference System (MFIS), the first step is to implement a scalable system to relay logical rules in order to produce three classifications for search behavior, user profiles, and query characteristics from analysis of navigation log files. These three outputs from the MFIS are used as inputs for the second step, an Adaptive Neuro-Fuzzy Inference System (ANFIS). The training process of the ANFIS replaced the rules by adjusting the weights in order to find the most relevant result for the search query. This proposed system, called MFIS-ANFIS, is implemented as an experimental system. The system performance is evaluated using quantitative and comparative analysis. MFIS-ANFIS aimed to be the core of intelligent and reliable search process.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献