Analyzing Blending Social and Mass Media Audiences Through the Lens of Computer-Mediated Discourse

Author:

Zelenkauskaite Asta1

Affiliation:

1. Drexel University, USA

Abstract

In recent years, mass media content has undergone a blending process with social media. Large amounts of text-based social media content have not only shaped mass media products, but also provided new opportunities to access audience behaviors through these large-scale datasets. Yet, evaluating a plethora of audience contents strikes one as methodologically challenging endeavor. This study illustrates advantages and applications of a mixed-method approach that includes quantitative computer-mediated discourse analysis (CMDA) and automated analysis of content frequency. To evaluate these methodologies, audience comments consisting of Facebook comments and SMS mobile texting to Italian radio-TV station RTL 102.5 were analyzed. Blended media contents through computer-mediated discourse analysis expand horizons for theoretical and methodological audience analysis research in parallel to established audience analysis metrics.

Publisher

IGI Global

Reference54 articles.

1. Amer-Yahia, S., Doan, A., Kleinberg, J., Koudas, N., & Franklin, M. (2010). Crowds, clouds, and algorithms: Exploring the human side of “big data” applications. In A. K. Elmagarmid & D. Agrawal (Eds.), Proceedings of SIGMOD International Conference on Management of data (pp. 1259-1260). Indianapolis, IN, USA.

2. Androutsopoulos, A., & Beißwenger, M. (2008). Introduction: Data and methods in computer-mediated discourse analysis. Language@Internet, 5. Retrieved December 10, 2012, from http://www.languageatinternet.org/articles/2008/1609

3. Audiradio. (2009). Dati Audiradio annuale 2009. Retrieved October 10, 2010, from http://www.audiradio.it/upload/File/Dati%20Audiradio%20annuale%202009.pdf

4. Baron, N. S. (2010). Discourse structures in Instant Messaging: The case of utterance breaks Language@Internet, 7. Retrieved October 11, 2012, from http://www.languageatinternet.org/articles/2010/2651

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3