Affiliation:
1. Alabama A&M University, USA
2. Air Force Research Laboratory, USA
Abstract
Autonomous robotics systems (ARSs) consist of multiple heterogeneous objects and intelligent inferences that are expected to take appropriate actions even in unforeseen circumstances. Dynamic reconfiguration of ARSs is a key enabling technology and plays a major role in the future cyber-enabled battle field. This research work, focused on the development of a formal approach to the specification and verification of reconfigurability of ARSs. Two typical problems w.r.t. the dynamic adaptation and reconfiguration of ARSs were identified and studied. The first problem is how to formally represent the ARSs and describe the reconfigurable behavior precisely so that the ARSs can adapt to the new changes. The second problem focuses on how to analyze and verify the formal model of the reconfiguration and ensure the correctness of the system during reconfiguration. Considering behavior preserving in the reconfiguration model, a net reconfiguration based on the natural transformation is introduced.