A Comparative Study of Machine Learning Techniques for Gesture Recognition Using Kinect

Author:

Ibañez Rodrigo1,Soria Alvaro1,Teyseyre Alfredo Raul1,Berdun Luis1,Campo Marcelo Ricardo1

Affiliation:

1. ISISTAN (UNICEN-CONICET) Research Institute, Argentina

Abstract

Progress and technological innovation achieved in recent years, particularly in the area of entertainment and games, have promoted the creation of more natural and intuitive human-computer interfaces. For example, natural interaction devices such as Microsoft Kinect allow users to explore a more expressive way of human-computer communication by recognizing body gestures. In this context, several Supervised Machine Learning techniques have been proposed to recognize gestures. However, scarce research works have focused on a comparative study of the behavior of these techniques. Therefore, this chapter presents an evaluation of 4 Machine Learning techniques by using the Microsoft Research Cambridge (MSRC-12) Kinect gesture dataset, which involves 30 people performing 12 different gestures. Accuracy was evaluated with different techniques obtaining correct-recognition rates close to 100% in some results. Briefly, the experiments performed in this chapter are likely to provide new insights into the application of Machine Learning technique to facilitate the task of gesture recognition.

Publisher

IGI Global

Reference34 articles.

1. Human Motion Analysis: A Review

2. Digital Representations of Human Movement

3. Gesture classification with machine learning using Kinect sensor data

4. Analysis and synthesis of human movement;T.Calvert;Handbook of Pattern Recognition and Image Processing: Computer Vision,1994

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An adavanced Gesture Recognition Using Machine Learning;2022 International Conference on Smart Generation Computing, Communication and Networking (SMART GENCON);2022-12-23

2. A deep learning approach to automatic road surface monitoring and pothole detection;Personal and Ubiquitous Computing;2019-05-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3