Affiliation:
1. ISISTAN (UNICEN-CONICET) Research Institute, Argentina
Abstract
Progress and technological innovation achieved in recent years, particularly in the area of entertainment and games, have promoted the creation of more natural and intuitive human-computer interfaces. For example, natural interaction devices such as Microsoft Kinect allow users to explore a more expressive way of human-computer communication by recognizing body gestures. In this context, several Supervised Machine Learning techniques have been proposed to recognize gestures. However, scarce research works have focused on a comparative study of the behavior of these techniques. Therefore, this chapter presents an evaluation of 4 Machine Learning techniques by using the Microsoft Research Cambridge (MSRC-12) Kinect gesture dataset, which involves 30 people performing 12 different gestures. Accuracy was evaluated with different techniques obtaining correct-recognition rates close to 100% in some results. Briefly, the experiments performed in this chapter are likely to provide new insights into the application of Machine Learning technique to facilitate the task of gesture recognition.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. An adavanced Gesture Recognition Using Machine Learning;2022 International Conference on Smart Generation Computing, Communication and Networking (SMART GENCON);2022-12-23
2. A deep learning approach to automatic road surface monitoring and pothole detection;Personal and Ubiquitous Computing;2019-05-27