Affiliation:
1. Jawaharlal Nehru University, India
Abstract
Query expansion (QE) is an efficient method for enhancing the efficiency of information retrieval system. In this work, we try to capture the limitations of pseudo-feedback based QE approach and propose a hybrid approach for enhancing the efficiency of feedback based QE by combining corpus-based, contextual based information of query terms, and semantic based knowledge of query terms. First of all, this paper explores the use of different corpus-based lexical co-occurrence approaches to select an optimal combination of query terms from a pool of terms obtained using pseudo-feedback based QE. Next, we explore semantic similarity approach based on word2vec for ranking the QE terms obtained from top pseudo-feedback documents. Further, we combine co-occurrence statistics, contextual window statistics, and semantic similarity based approaches together to select the best expansion terms for query reformulation. The experiments were performed on FIRE ad-hoc and TREC-3 benchmark datasets. The statistics of our proposed experimental results show significant improvement over baseline method.