Geographic Knowledge Discovery in Multiple Spatial Databases

Author:

Mehenni Tahar1

Affiliation:

1. University Mohamed Boudiaf of M'sila, Algeria

Abstract

Voluminous geographic data have been, and continue to be, collected from various Geographic Information Systems (GIS) applications such as Global Positioning Systems (GPS) and high-resolution remote sensing. For these applications, huge amount of data is maintained in multiple disparate databases and different in spatial data type, file formats, data schema, access mechanism, etc. Spatial data mining and knowledge discovery has emerged as an active research field that focuses on the development of theory, methodology, and practice for the extraction of useful information and knowledge from massive and complex spatial databases. This chapter highlights recent theoretical and applied research in geographic knowledge discovery and spatial data mining in a distributed environment where spatial data are dispersed in multiple sites. The author will present in this chapter, an overall picture of how spatial multi-database mining is achieved through several common spatial data-mining tasks, including spatial cluster analysis, spatial association rule and spatial classification.

Publisher

IGI Global

Reference73 articles.

1. Developing Multi-Database Mining Applications

2. Agrawal, R., Imielinski, T., & Swami, A. (1993). Mining association rules between sets of items in large databases. ACM SIGMOD international conference on management of data (pp. 207–216).

3. Mining and Filtering Multi-level Spatial Association Rules with ARES.;A.Appice;LNAI,2005

4. Appice, A., Ceci, M., Lanza, A., Lisi, F., & Malerba, D. (2003). Discovery of Spatial Association Rules in Georeferenced Census Data: A Relational Mining Approach. Intelligent Data Analysis.

5. Arvind, S., Jat, S., & Gupta, R. (n.d.). A Survey of Spatial Data Mining Approaches: Algorithms and Architecture. International Journal of Computer Technology and Electronics Communication, 15-22.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3