Affiliation:
1. University of Turkish Aeronautical Association, Turkey
2. Spectrum Health System, USA
3. Henry Ford Health System, USA
Abstract
The current study examines algorithmic approaches for analysis of multimodal attributes in localization-related epilepsy (LRE), specifically, their impact on the selection of patients for surgical consideration. Invasive electrographic data is excluded here to concentrate upon the localized anatomical landmarks and identified/initialized brain structures in volumetric MR images as well as initial clinical presentation and the varied elements of the seizure history, ictal semiology, risk and seizure-precipitating factors and physical findings in addition to several features of the neuropsychological profile including various parameters of cognition and both speech and memory lateralization. First, the imaging modality data is excluded and just clinical, electrographic and neuropsychological data are investigated. Afterward, the imaging data are investigated and a comparison between the prediction results of the two types of data is done. In the case of using non-imaging multimodal data, 56% and using imaging features, about 71% of correct outcome prediction was obtained.