Affiliation:
1. OKI Regional Council of Governments, USA
2. Miami University, USA
Abstract
The ability to predict American beech distribution (Fagus grandifolia Ehrh.) from environmental data was tested by using a geographic information system (GIS) in tandem with species distribution models (SDMs). The study was conducted in Butler and Preble counties in Ohio, USA. Topography, soils, and disturbance were approximated through 15 predictor variables with presence/absence and basal area serving as the response variables. Using a generalized linear model (GLM) and a boosted regression tree (BRT) model, curvature, elevation, and tasseled cap greenness were shown to be significant predictors of beech presence. Each of these variables was positively related to beech presence. A linear model using presence only data was not effective in predicting basal area due to a small sample size. This study demonstrates that SDMs can be used successfully to advance one's understanding of the relationship between tree species presence and environmental factors. Large sample sizes are needed to successfully model continuous variables.