Abstract
With rising urbanization and change in lifestyle and food habits of human beings, the amount of municipal solid wastes (MSWs) are now being increasing day by day, and the composition of wastes are now also being changed. Therefore, it is now becoming essential to develop a consistent mathematical model for managing those wastes in a systematic manner. In this context, fuzzy chance constrained programming (FCCP) model becomes useful to handle wastes efficiently through the process of selecting sorting stations, treatment facilities, etc. through an efficient way so that the net system cost of sorting and transporting the wastes would be minimized, and the revenue generated from different sorting stations and different treatment facilities would be to maximized. From that view point, in this chapter, a fuzzy chance constrained programming (CCP) model is developed for MSW management. Most of the parameters involved with this model are imprecisely defined and probabilistically uncertain. So, the parameters of the objectives are considered as FNs, and the right side parameters of the probabilistic constraints involve normally distributed fuzzy random variables (FRVs). To resolve the cases arising due to the multiple occurrences of fuzzy goals, a fuzzy goal programming (FGP) has been adopted. To expound the potential use of the approach, a modified version of a case example, studied previously, is considered and solved. The achieved model solution is discussed elaborately to illustrate the proposed methodology for MSW management.