Stereohedrons and Partition of n-Dimensional Space

Author:

Abstract

The process of hierarchical filling of space by p-dimensional regular polytopes is considered under the condition of large-scale discrete increase in the size of polytopes and preservation of their shape (scaling process). It is shown that the polytopic prismahedrons are a concrete realization of the stereohedrons. The polytopic prismahedrons have the necessary properties for translational filling of spaces of higher dimension without slits face to face. Moreover, it is proved that the polytopic prismahedrons forming such fillings can have common elements of any dimension included in the polytope. On the basis of the research carried out in spaces of higher dimension, a new paradigm for describing a discrete world has been put forward.

Publisher

IGI Global

Reference37 articles.

1. Bieberbach, L. (1910). Uber die Bewegungsruppen des n-dimensionalen Euklidischen Räumes mit einem endlichen fundamentalbereich. Gött. Nachr., 75 – 84.

2. Über die Bewegungsgruppen der Euklidischen Räume

3. �ber die Bewegungsgruppen der Euklidischen R�ume (Zweite Abhandlung.) Die Gruppen mit einem endlichen Fundamentalbereich

4. Geometry of positive quadratic forms.;B.Delone;Uspekhi Mat. Nauk.,1937

5. Proof of the main theorem of the theory of stereohedrons.;B.Delone;Reports of the Academy of Sciences of the USSR,1961

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3