Abstract
Order statistics refer to the collection of sample observations sorted in ascending order and are among the most fundamental tools in non-parametric statistics and inference. Statistical inference established based on order statistics assumes nothing stronger than continuity of the cumulative distribution function of the population and is simple and broadly applicable. The authors discuss how order statistics are applied in statistical analysis (e.g., tests of independence, tests of goodness of fit, hypothesis tests of equivalence of means, ranking and selection, and quantile estimation). These order-statistics techniques are key components of many studies.