Coronary Heart Disease Prognosis Using Machine-Learning Techniques on Patients With Type 2 Diabetes Mellitus

Author:

Pimentel Angela1,Gamboa Hugo1,Almeida Isa Maria2,Matos Pedro2,Ribeiro Rogério T.2,Raposo João2

Affiliation:

1. FCT-UNL, Portugal

2. APDP-ERC, Portugal

Abstract

Heart diseases and stroke are the number one cause of death and disability among people with type 2 diabetes (T2D). Clinicians and health authorities for many years have expressed interest in identifying individuals at increased risk of coronary heart disease (CHD). Our main objective is to develop a prognostic workflow of CHD in T2D patients using a Holter dataset. This workflow development will be based on machine learning techniques by testing a variety of classifiers and subsequent selection of the best performing system. It will also assess the impact of feature selection and bootstrapping techniques over these systems. Among a variety of classifiers such as Naive Bayes (NB), Random Forest (RF), Support Vector Machine (SVM), Alternating Decision Tree (ADT), Random Tree (RT) and K-Nearest Neighbour (KNN), the best performing classifier is NB. We achieved an area under receiver operating characteristics curve (AUC) of 68,06% and 74,33% for a prognosis of 3 and 4 years, respectively.

Publisher

IGI Global

Reference35 articles.

1. Instance-based learning algorithms

2. Assign Score - Prioritising Prevention of Cardiovascular Disease. (n.d.). Retrieved March 2015 from http://assign-score.com/

3. SMOTE: Synthetic minority over-sampling technique.;N. V.Chawla;Journal of Artificial Intelligence Research,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3