Data-Driven Decision Making to Select Condition-Based Maintenance Technology

Author:

Carnero-Moya María Carmen1

Affiliation:

1. University of Castilla-La Mancha, Spain & Universidade de Lisboa, Portugal

Abstract

Condition-based maintenance (CBM) may be considered an essential part of the Industry 4.0 environment because it can improve production processes through the use of the latest digital technologies. The literature includes a large number of contributions on new techniques for diagnosis, signal treatment, analysis of technical parameters, and prognosis. However, to obtain the expected benefits of a vibration analysis program, it is necessary to choose the instruments and introduction process best suited to the organization, and so guarantee the best results using data-driven decision making in accordance with the needs of Industry 4.0. Despite the importance of these decisions, no relevant models are found in the literature. This contribution describes a fuzzy multicriteria model for choosing the most suitable technology in vibration analysis. The goal is to create a model that is easy for organizations to use, and which reflects the judgements of a number of experts in maintenance and vibration analysis. The model has been applied to a Spanish state-run healthcare organization.

Publisher

IGI Global

Reference45 articles.

1. Ballesteros, F. (2014). Equipos portátiles de medida de vibración para diagnóstico de maquinaria. Preditec-IRM, NT08/2.

2. A multi-criteria model for auditing a Predictive Maintenance Programme

3. Facilitating bid evaluation in public call for tenders: a socio-technical approach

4. Barm, H. M., Deshpande, A. A., & Patil, S. S. (2015). Availability Improvement by Early Detection of Motor Bearing Failure Using Comprehensive Condition Monitoring Techniques at DTPS. Vibration Engineering and Technology of Machinery, 1101-1111.

5. Selection of diagnostic techniques and instrumentation in a predictive maintenance program. A case study

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3