On Developing and Performance Evaluation of Adaptive Second Order Neural Network With GA-Based Training (ASONN-GA) for Financial Time Series Prediction

Author:

Nayak Sarat Chandra1,Misra Bijan Bihari2,Behera Himansu Sekhar3

Affiliation:

1. Kommuri Pratap Reddy Institute of Technology, India

2. Silicon Institute of Technology, India

3. Veer Surendra Sai University of Technology, India

Abstract

Financial time series forecasting has been regarded as a challenging issue because of successful prediction could yield significant profit, hence require an efficient prediction system. Conventional ANN based models are not competent systems. Higher order neural networks have several advantages over traditional neural networks such as stronger approximation, higher fault tolerance capacity and faster convergence. With the aim of achieving improved forecasting accuracy, this article develops and evaluates the performance of an adaptive single layer second order neural network with GA based training (ASONN-GA). The global search ability of GA has been incorporated with the better generalization ability of a second order neural network and the model is found quite capable in handling the uncertainties and nonlinearities associated with the financial time series. The model takes minimal input data and considered the partially optimized weight set from previous training, hence a significant reduction in training time. The efficiency of the model has been evaluated by forecasting one-step-ahead closing prices and exchange rates of five real stock markets and it is revealed that the ASONN-GA model achieves better forecasting accuracy over other state of the art models.

Publisher

IGI Global

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3