Nature-Inspired Techniques for Data Security in Big Data

Author:

Sekhar S. R. Mani1,Siddesh G. M. 1,Anand Shaswat1,Laxmi D.1

Affiliation:

1. Ramaiah Institute of Technology (MSRIT), India

Abstract

Inspired computing is based on biomimcry of natural occurrences. It is a discipline in which problems are solved using computer models which derive their abstractions from real-world living organisms and their social behavior. It is a branch of machine learning that is very closely related to artificial intelligence. This form of computing can be effectively used for data security, feature extraction, etc. It can easily be integrated with different areas such as big data, IoT, cloud computing, edge computing, and fog computing for data security. The chapter discusses some of the most popular biologically-inspired computation algorithms which can be used to create secured framework for data security in big data like ant colony optimization, artificial bee colony, bacterial foraging optimization to name a few. Explanation of these algorithms and scope of its application are given. Furthermore, case studies are presented to help the reader understand the application of these techniques for security in big data.

Publisher

IGI Global

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3