DBMS Log Analytics for Detecting Insider Threats in Contemporary Organizations

Author:

Khan Muhammad Imran1,Foley Simon N.2,O'Sullivan Barry3

Affiliation:

1. Insight Centre for Data Analytics, Ireland

2. IMT Atlantique, France

3. University College Cork, Ireland

Abstract

Insiders are legitimate users of a system; however, they pose a threat because of their granted access privileges. Anomaly-based intrusion detection approaches have been shown to be effective in the detection of insiders' malicious behavior. Database management systems (DBMS) are the core of any contemporary organization enabling them to store and manage their data. Yet insiders may misuse their privileges to access stored data via a DBMS with malicious intentions. In this chapter, a taxonomy of anomalous DBMS access detection systems is presented. Secondly, an anomaly-based mechanism that detects insider attacks within a DBMS framework is proposed whereby a model of normative behavior of insiders n-grams are used to capture normal query patterns in a log of SQL queries generated from a synthetic banking application system. It is demonstrated that n-grams do capture the short-term correlations inherent in the application. This chapter also outlines challenges pertaining to the design of more effective anomaly-based intrusion detection systems to detect insider attacks.

Publisher

IGI Global

Reference59 articles.

1. Applying Bag of System Calls for Anomalous Behavior Detection of Applications in Linux Containers

2. Mining association rules between sets of items in large databases

3. Australian Government. F. R. o. L. (2017). Privacy amendment (notifiable data breaches) act 2017. Retrieved from https://www.legislation.gov.au/ Details/C2017A00012

4. Intrusion Detection Systems

5. A temporal access control mechanism for database systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3