Using Resources Competition and Memory Cell Development to Select the Best GMM for Background Subtraction

Author:

Nebili Wafa1,Farou Brahim1ORCID,Seridi Hamid2

Affiliation:

1. University 8 Mai 1945 Guelma, Guelma, Algeria

2. LabSTIC laboratory, University 8 mai 1945 Guelma, Guelma, Algeria

Abstract

Background subtraction is an essential step in the process of monitoring videos. Several works have proposed models to differentiate the background pixels from the foreground pixels. Mixtures of Gaussian (GMM) are among the most popular models for a such problem. However, the use of a fixed number of Gaussians influence on their results quality. This article proposes an improvement of the GMM based on the use of the artificial immune recognition system (AIRS) to generate and introduce new Gaussians instead of using a fixed number of Gaussians. The proposed approach exploits the robustness of the mutation function in the generation phase of the new ARBs to create new Gaussians. These Gaussians are then filtered into the resource competition phase in order to keep only ones that best represent the background. The system tested on Wallflower and UCSD datasets has proven its effectiveness against other state-of-art methods.

Publisher

IGI Global

Subject

General Materials Science

Reference39 articles.

1. Allebosch, G., Van Hamme, D., Deboeverie, F., Veelaert, P., & Philips, W. (2015). C-efic: color and edge based foreground background segmentation with interior classification. Proceedings of theInternational Joint Conference on Computer Vision, Imaging and Computer Graphics (pp. 433-454). Springer.

2. A deep convolutional neural network for video sequence background subtraction

3. Bouwmans, T. (2012), Background subtraction for visual surveillance: A fuzzy approach, Handbook on soft computing for video surveillance, 5: 103-138.

4. Modeling of dynamic backgrounds by type-2 fuzzy gaussians mixture models.;T.Bouwmans;MASAUM Journal of of Basic and Applied Sciences,2010

5. Evaluation of background subtraction techniques for video surveillance

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3