A Novel Deep Federated Learning-Based Model to Enhance Privacy in Critical Infrastructure Systems

Author:

Sharma Akash1ORCID,Singh Sunil K.1ORCID,Chhabra Anureet1,Kumar Sudhakar1,Arya Varsha2,Moslehpour Massoud3ORCID

Affiliation:

1. Chandigarh College of Engineering and Technology, Chandigarh, India

2. Department of Business Administration, Asia University, Taiwan & Department of Electrical and Computer Engineering, Lebanese American University, Beirut, Lebanon & Center for Interdisciplinary Research, University of Petroleum and Energy Studies (UPES), Dehradun, India

3. Department of Business Administration, Asia University, Taiwan & California State University, San Bernardino, USA

Abstract

Deep learning (DL) can provide critical infrastructure operators with valuable insights and predictive capabilities to help them make more informed decisions, improving system's robustness. However, training DL models requires large amounts of data, which can be costly to store in a centralized manner. Storing large amounts of sensitive critical infrastructure data in the cloud can pose significant security risks. Federated learning (FL) allows several clients to share learning data and train ML models. Unlike centralized models, FL does not require the sharing of client data. A novel framework is presented to train a VGG16 based CNN global model without sharing the data and only updating the local models among clients using federated averaging. For experimentation, MNIST dataset is used. The framework achieves high accuracy and keep data private using FL in critical infrastructures. The benefits and challenges of FL along with security vulnerabilities and attacks have been discussed along with the defenses that can be used to mitigate these attacks.

Publisher

IGI Global

Subject

Pharmacology (medical),Complementary and alternative medicine,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3