Similarity Retrieval Based on Image Background Analysis

Author:

Zhu Chang1,Jiang Wenchao1,Zhou Weilin2,Xiao Hong1

Affiliation:

1. Guangdong University of Technology, China

2. Global Digital Cybersecurity Authority Co., Ltd., China

Abstract

Aiming at the problem of traditional portrait background similarity retrieval methods being low accuracy and time-consuming, a similarity retrieval method based on image background analysis is presented. The proposed method uses a combination of portrait segmentation and retrieval models. Firstly, the portrait segmentation model is used to remove the portraits in the images to eliminate the interference of portraits on background features; secondly, the image retrieval model is used to retrieve images with similar background features; LSH is added to improve the retrieval efficiency; finally, the retrieval results are used to further determine whether the background is similar. The experiment is implemented based on real data from a company. The results showed that the average precision, average map, and recall of this method reached 85%, 90%, and 50%, respectively. The average accuracy and recall are 10% better than the overall image retrieval model.

Publisher

IGI Global

Subject

Pharmacology (medical)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unmanned Aerial Vehicle-Based Animal Detection via Hybrid CNN and LSTM Model;ICC 2024 - IEEE International Conference on Communications;2024-06-09

2. Unmanned Aerial Vehicle Fire Detection Platform Based on Semantic Yolov5 and Autonomous Recognition;International Journal on Semantic Web and Information Systems;2024-05-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3