Exploring Vectorization and Prefetching Techniques on Scientific Kernels and Inferring the Cache Performance Metrics

Author:

Banu J. Saira1,Babu M. Rajasekhara1

Affiliation:

1. School of Computing Science and Engineering, VIT University, Vellore, India

Abstract

Performance improvement in modern processor is staggering due to power wall and memory wall problem. In general, the power wall problem is addressed by various vectorization design techniques. The Memory wall problem is diminished through prefetching technique. In this paper vectorization is achieved through Single Instruction Multiple Data (SIMD) registers of the current processor. It provides architecture optimization by reducing the number of instructions in the pipeline and by minimizing the utilization of multi-level memory hierarchy. These registers provide an economical computing platform compared to Graphics Processing Unit (GPU) for compute intensive applications. This paper explores software prefetching via Streaming SIMD extension (SSE) instructions to mitigate the memory wall problem. This work quantifies the effect of vectorization and prefetching in Matrix Vector Multiplication (MVM) kernel with dense and sparse structure. Both Prefetching and Vectorization method reduces the data and instruction cache pressure and thereby improving the cache performance. To show the cache performance improvements in the kernel, the Intel VTune amplifier is used. Finally, experimental results demonstrate a promising performance of matrix kernel by Intel Haswell's processor. However, effective utilization of SIMD registers is a programming challenge to the developers.

Publisher

IGI Global

Subject

Computer Networks and Communications

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. VAIL: A Victim-Aware Cache Policy to improve NVM Lifetime for hybrid memory system;Parallel Computing;2019-09

2. VAIL;Proceedings of the 9th International Workshop on Programming Models and Applications for Multicores and Manycores;2018-02-24

3. WatCache: a workload-aware temporary cache on the compute side of HPC systems;The Journal of Supercomputing;2017-10-26

4. Prefetching-based metadata management in Advanced Multitenant Hadoop;The Journal of Supercomputing;2017-03-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3