Affiliation:
1. Department of Computer Applications, PSG College of Technology, Coimbatore, India
Abstract
Risk Budgeted portfolio optimization problem centering on the twin objectives of maximizing expected portfolio return and minimizing portfolio risk and incorporating the risk budgeting investment strategy, turns complex for direct solving by classical methods triggering the need to look for metaheuristic solutions. This work explores the application of an extended Ant Colony Optimization algorithm that borrows concepts from evolution theory, for the solution of the problem and proceeds to compare the experimental results with those obtained by two other Metaheuristic optimization methods belonging to two different genres viz., Evolution Strategy with Hall of Fame and Differential Evolution, obtained in an earlier investigation. The experimental studies have been undertaken over Bombay Stock Exchange data set (BSE200: July 2001-July 2006) and Tokyo Stock Exchange data set (Nikkei225: July 2001-July 2006). Data Envelopment Analysis has also been undertaken to compare the performance of the technical efficiencies of the optimal risk budgeted portfolios obtained by the three approaches.
Subject
Decision Sciences (miscellaneous),Computational Mathematics,Computational Theory and Mathematics,Control and Optimization,Computer Science Applications,Modeling and Simulation,Statistics and Probability
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. DEA Performance Assessment of Mutual Funds;International Series in Operations Research & Management Science;2016