Extraction of Target User Group from Web Usage Data Using Evolutionary Biclustering Approach

Author:

Rathipriya R.1ORCID,Thangavel K.1,Bagyamani J.2

Affiliation:

1. Periyar University, India

2. Government Arts College, India

Abstract

Data mining extracts hidden information from a database that the user did not know existed. Biclustering is one of the data mining technique which helps marketing user to target marketing campaigns more accurately and to align campaigns more closely with the needs, wants, and attitudes of customers and prospects. The biclustering results can be tuned to find users’ browsing patterns relevant to current business problems. This paper presents a new application of biclustering to web usage data using a combination of heuristics and meta-heuristics algorithms. Two-way K-means clustering is used to generate the seeds from preprocessed web usage data, Greedy Heuristic is used iteratively to refine a set of seeds, which is fast but often yield local optimal solutions. In this paper, Genetic Algorithm is used as a global optimizer that can be coupled with greedy method to identify the global optimal target user groups based on their coherent browsing pattern. The performance of the proposed work is evaluated by conducting experiment on the msnbc, a clickstream dataset from UCI repository. Results show that the proposed work performs well in extracting optimal target users groups from the web usage data which can be used for focalized marketing campaigns.

Publisher

IGI Global

Subject

Decision Sciences (miscellaneous),Computational Mathematics,Computational Theory and Mathematics,Control and Optimization,Computer Science Applications,Modeling and Simulation,Statistics and Probability

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. GeneticTKM;Transportation Systems and Engineering;2015

2. GeneticTKM;International Journal of Applied Metaheuristic Computing;2013-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3