A Collaborative Road Traffic Regulation Approach Using a Wireless Sensor Network

Author:

Rida Nouha1,Hasbi Abderrahim1

Affiliation:

1. Mohammadia School of Engineers, Morocco

Abstract

In this paper, we detail and evaluate a coordinated approach to determining the sequence and duration of green lights at several intersections as part of the Intelligent Transportation System. We present the architecture of a wireless network used to track variations in adjacent intersections. Our algorithm exploits the collected data to determine the sequence of the green lights based on three objectives: (i) reduce the length of queues in the intersection, (ii) prioritize sending vehicle flows to intersections with lower traffic density than the most congested, (iii) synchronize traffic signals between adjacent intersections to create green waves. Traffic simulations have been simulated by the SUMO traffic simulator, they show that our solution manages to react to traffic change and reduce waiting time compared to isolated control strategies.

Publisher

IGI Global

Subject

Multidisciplinary,General Engineering,General Business, Management and Accounting,General Computer Science

Reference53 articles.

1. Shortest Processing Time Scheduling to Reduce Traffic Congestion in Dense Urban Areas

2. Continuous residual reinforcement learning for traffic signal control optimization

3. Traffic control in a smart intersection by an algorithm with social priorities

4. Behrisch, M., Bieker, L., Erdmann, J., & Krajzewicz, D. (2011). SUMO–simulation of urban mobility: an overview. In Proceedings of SIMUL 2011, The Third International Conference on Advances in System Simulation. ThinkMind.

5. Smart Mobility Using Multi-Agent System

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improving Energy Consumption Efficiency and Environmental Sustainability Through Smart Traffic Control Adaptation;2023 IEEE International Conference on Artificial Intelligence & Green Energy (ICAIGE);2023-10-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3