On the Development of an Ants-Inspired Navigational Network for Autonomous Robots

Author:

Jiménez Paulo A.1,Zhong Yongmin2

Affiliation:

1. Monash University, Australia

2. RMIT University, Australia

Abstract

Experimental research in biology has uncovered a number of different ways in which ants use environmental cues for navigational purposes. For instance, pheromone trail laying and trail following behaviours of ants have proved to be an efficient mechanism to optimise path selection in natural as well as in artificial situations. Drawing inspiration from biology, the authors present a new neural strategy for navigation. The authors propose a navigational network composed of a gating network, memory and two recurrent neural networks (RNN). The navigational network learns to follow a trail and to orientate based on landmarks, while continuously recording the location of the home position in case the trail is lost. The orientation was encoded as a continuous ring of neurons, while the distance was encoded as a chain of neurons. Finally, the computational analysis provides a more complete exploration of the properties of the proposed navigational network. This network is able to learn and select behaviours based on sensory clues. The proposed model shows that neural path integration is possible and is easy to achieve.

Publisher

IGI Global

Subject

Artificial Intelligence,Industrial and Manufacturing Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Automated Approach for Adaptive Control Systems;International Journal of Intelligent Mechatronics and Robotics;2012-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3