Performance Assessment of Learning Algorithms on Multi-Domain Data Sets

Author:

Kumar Amit1,Sarkar Bikash Kanti1

Affiliation:

1. Computer Science and Engineering, Birla Institute of Technology, Ranchi, India

Abstract

This article describes how for the last few decades, data mining research has had significant progress in a wide spectrum of applications. Research in prediction of multi-domain data sets is a challenging task due to the imbalanced, voluminous, conflicting, and complex nature of data sets. A learning algorithm is the most important technique for solving these problems. The learning algorithms are widely used for classification purposes. But choosing the learners that perform best for data sets of particular domains is a challenging task in data mining. This article provides a comparative performance assessment of various state-of-the-art learning algorithms over multi-domain data sets to search the effective classifier(s) for a particular domain, e.g., artificial, natural, semi-natural, etc. In the present article, a total of 14 real world data sets are selected from University of California, Irvine (UCI) machine learning repository for conducting experiments using three competent individual learners and their hybrid combinations.

Publisher

IGI Global

Subject

General Medicine

Reference42 articles.

1. Decision tree classifiers for automated medical diagnosis

2. Data Mining for Intelligent Web Caching;F.Bonchi;Proceedings of International Conference on Information Technology: Coding and computing,2001

3. Artificial nonmonotonic neural networks

4. Introduction to Data Mining for Medical Informatics

5. A Comparative Evaluation of Voting and Meta-learning on Partitioned Data

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3