DRESS: A Distributed RMS Evaluation Simulation Software

Author:

Agate Vincenzo1,De Paola Alessandra1ORCID,Lo Re Giuseppe1,Morana Marco1

Affiliation:

1. Università degli Studi di Palermo, Italy

Abstract

Distributed environments consist of a huge number of entities that cooperate to achieve complex goals. When interactions occur between unknown parties, intelligent techniques for estimating agent reputations are required. Reputation management systems (RMS's) allow agents to perform such estimation in a cooperative way. In particular, distributed RMS's exploit feedbacks provided after each interaction and allow prediction of future behaviors of agents. Such systems, in contrast to centralized RMSs, are sensitive to fake information injected by malicious users; thus, predicting the performance of a distributed RMS is a very challenging task. Although many existing works have addressed some challenges concerning the design and assessment of specific RMS's, there are no simulation environments that adopt a general approach that can be applied to different application scenarios. To overcome this lack, we present DRESS, an agent-based simulation framework that aims to support researchers in the evaluation of distributed RMSs under different security attacks.

Publisher

IGI Global

Subject

Decision Sciences (miscellaneous),Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reputation-Based Dissemination of Trustworthy Information in VANETs;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2024

2. Reliable Reputation-Based Event Detection in V2V Networks;Communications in Computer and Information Science;2023-12-20

3. Review of energy sharing: Business models, mechanisms, and prospects;IET Renewable Power Generation;2022-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3