Cold Start Problem Alleviation in a Research Paper Recommendation System Using the Random Walk Approach on a Heterogeneous User-Paper Graph

Author:

Manju G. 1,Abhinaya P. 2,Hemalatha M.R. 2,Manju Ganesh G. 2,Manju G.G. 2

Affiliation:

1. SRM Institute of Science and Technology, India

2. Anna University, India

Abstract

Recommendation approaches generally fail to recommend newly-published papers as relevant, owing to the lack of prior information about the said papers and, more particularly, problems associated with cold starts. It would appear, to all intents and purposes, that researchers currently interact more on social networks than they normally would in academic circles, and relationships of a purely academic nature have witnessed a paradigm shift, in keeping with this new trend. In existing paper recommendation methods, the social interaction factor has yet to play a pivotal role. The authors propose a social network-based research paper recommendation method, that alleviates cold start problems by incorporating users' social interaction, as well as topical relevancy, among assorted papers in the Mendeley academic social network using a novel approach, random walk Ergodic Markov Chain. The system yields improved results after cold start alleviation, compared with the existing system.

Publisher

IGI Global

Subject

Decision Sciences (miscellaneous),Information Systems

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3