Classification of Software Defects Using Orthogonal Defect Classification

Author:

Kumar Sushil1,Muttoo SK2,Singh V. B.3

Affiliation:

1. Shyam Lal College, University of Delhi, India

2. University of Delhi, India

3. Jawaharlal Nehru University, India

Abstract

Classification of software defects is an important task to know the type of defects. It helps to prioritize the defects, to understand the cause of defects for improving the process of software defect management system by taking the appropriate action. In this paper, we evaluate the performance of naïve Bayes, support vector machine, k nearest neighbor, random forest, and decision tree machine learning algorithm to classify the software defect based on orthogonal defect classification by selecting the relevant features using chi-square score. Standard metrics accuracy, precision, and recall are calculated separately for Cassandra, HBase, and MongoDB datasets. The proposed method improves the existing approach in terms of accuracy by 5%, 20%, 6%, 27%, and 26% for activity, defect impact, target, type, and qualifier respectively, and shows the enhanced performance.

Publisher

IGI Global

Subject

Software

Reference40 articles.

1. Software errors and complexity: an empirical investigation0

2. Board, I. (1993). IEEE standard classification for software anomalies. IEEE Std, 1044.

3. Bagging predictors

4. Orthogonal defect classification using defect data to improve software development.;N.Bridge;Software Quality,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3