Enhancing Clustering Performance Using Topic Modeling-Based Dimensionality Reduction

Author:

Ramathulasi T.1ORCID,Babu M. Rajasekhara1

Affiliation:

1. Vellore Institute of Technology, India

Abstract

Mainly in the present times, the description of the services and their working procedure have been established in natural text language. We have obtained service groups based on their similarities to reduce search space and time in service innovation. Major topic models such as LSA, LDA, and CTM policies have not been able to show effective performance due to the short description and limited description of services in text form, the reduction or absence of words that occur. To solve the issues created by brief text, the Dirichlet Multinomial Mixer model (DMM) with features representation using the Gibbs algorithm has been developed to reduce dimensionality in clustering and enhance performance. The launch results prove that DMM-Gibbs can give better results than all other methods with agglomerative or K-means clustering methods by sampling. Evaluations with internal and external criteria were used to calculate clustering performance based on these two values. Using this standard model, the dimensionality can be reduced to 93.13% and better clustering performance can be achieved.

Publisher

IGI Global

Subject

Software

Reference22 articles.

1. Extracting Topics from Semi-structured Data for Enhancing Enterprise Knowledge Graphs

2. Probabilistic Topic Models for Web Services Clustering and Discovery

3. Barnaghi, P., Cassar, G., & Moessner, K. (2010). Probabilistic methods for service clustering. CEUR workshop proceedings:Proceedings of 4th international workshop on service matchmaking and resource retrieval in the semantic webVol, 667.

4. Machine learning in efficient and effective web service discovery.;K.Bhardwaj;Journal of Web Engineering,2015

5. Latent Dirichlet allocation.;D.Blei;Journal of Machine Learning Research,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3