User Models for Adaptive Information Retrieval on the Web

Author:

Chevalier Max1,Julien Christine1,Soulé-Dupuy Chantal2

Affiliation:

1. Université Toulouse 3 Paul Sabatier, IRIT, UMR 5505, France

2. Université Toulouse 1 Capitole, IRIT, UMR 5505, France

Abstract

Searching information can be realized thanks to specific tools called Information Retrieval Systems IRS (also called “search engines”). To provide more accurate results to users, most of such systems offer personalization features. To do this, each system models a user in order to adapt search results that will be displayed. In a multi-application context (e.g., when using several search engines for a unique query), personalization techniques can be considered as limited because the user model (also called profile) is incomplete since it does not exploit actions/queries coming from other search engines. So, sharing user models between several search engines is a challenge in order to provide more efficient personalization techniques. A semantic architecture for user profile interoperability is proposed to reach this goal. This architecture is also important because it can be used in many other contexts to share various resources models, for instance a document model, between applications. It is also ensuring the possibility for every system to keep its own representation of each resource while providing a solution to easily share it.

Publisher

IGI Global

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3