sl-LSTM

Author:

Victor Nancy1ORCID,Lopez Daphne1ORCID

Affiliation:

1. Vellore Institute of Technology, India

Abstract

The volume of data in diverse data formats from various data sources has led the way for a new drift in the digital world, Big Data. This article proposes sl-LSTM (sequence labelling LSTM), a neural network architecture that combines the effectiveness of typical LSTM models to perform sequence labeling tasks. This is a bi-directional LSTM which uses stochastic gradient descent optimization and combines two features of the existing LSTM variants: coupled input-forget gates for reducing the computational complexity and peephole connections that allow all gates to inspect the current cell state. The model is tested on different datasets and the results show that the integration of various neural network models can further improve the efficiency of approach for identifying sensitive information in Big data.

Publisher

IGI Global

Subject

Computer Networks and Communications

Reference24 articles.

1. Large-scale machine learning with stochastic gradient descent.;L.Bottou;Proceedings of COMPSTAT,2010

2. Camron, G. (2016). Recurrent Neural Networks for Beginners. Retrieved from https://medium.com/@camrongodbout/recurrent-neural-networks-for-beginners-7aca4e933b82

3. Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation.

4. Introduction to information retrieval.;D. M.Christopher;An Introduction To Information Retrieval,2008

5. Broad-coverage sense disambiguation and information extraction with a supersense sequence tagger

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3