Hybrid TRS-PSO Clustering Approach for Web2.0 Social Tagging System

Author:

Inbarani H Hannah1,Kumar S Selva1,Azar Ahmad Taher2ORCID,Hassanien Aboul Ella3

Affiliation:

1. Department of Computer Science, Periyar University, Salem, India

2. Benha University, Benha, Egypt

3. Cairo University, Cairo, Egypt, & Computers and Information Faculty, Beni Suef University, Beni Suef, Egypt, & Scientific Research Group in Egypt (SRGE), Giza, Egypt

Abstract

Social tagging is one of the important characteristics of WEB2.0. The challenge of Web 2.0 is a huge amount of data generated over a short period. Tags are widely used to interpret and classify the web 2.0 resources. Tag clustering is the process of grouping the similar tags into clusters. The tag clustering is very useful for searching and organizing the web2.0 resources and also important for the success of Social Bookmarking systems. In this paper, the authors proposed a hybrid Tolerance Rough Set Based Particle Swarm optimization (TRS-PSO) clustering algorithm for clustering tags in social systems. Then the proposed method is compared to the benchmark algorithm K-Means clustering and Particle Swarm optimization (PSO) based Clustering technique. The experimental analysis illustrates the effectiveness of the proposed approach.

Publisher

IGI Global

Subject

General Medicine

Reference30 articles.

1. Azar, A. T., Banu, P. K. N., & Inbarani, H. H. (2013) PSORR - An Unsupervised Feature Selection Technique for Fetal Heart Rate. 5th International Conference on Modelling, Identification and Control (ICMIC 2013), 31 August, 1-2 September 2013, Egypt.

2. Dimensionality reduction of medical big data using neural-fuzzy classifier

3. Begelman, G., Keller, P., & Smadja, F. (2006) Automated Tag Clustering: Improving search and exploration in the tag space. In: Collaborative Web Tagging Workshop, 15th WWW Conference, Edinburgh.

4. A review of feature selection methods on synthetic data

5. An integrated approach to discover tag semantics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Novel Hybrid Genetic Arithmetic Optimization for Feature Selection and Classification of Pulmonary Disease Images;International Journal of Sociotechnology and Knowledge Development;2023-09-12

2. Novel Adaptive Histogram Binning-Based Lesion Segmentation for Discerning Severity in COVID-19 Chest CT Scan Images;International Journal of Sociotechnology and Knowledge Development;2023-06-09

3. Novel Architecture for Image Classification Based on Rough Set;International Journal of Service Science, Management, Engineering, and Technology;2023-05-19

4. A Novel Deep Learning Model for Recognition of Endangered Water-Bird Species;International Journal of Sociotechnology and Knowledge Development;2022-12-21

5. Robust Feature Selection Using Rough Set-Based Ant-Lion Optimizer for Data Classification;International Journal of Sociotechnology and Knowledge Development;2022-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3