Affiliation:
1. YSR Engineering College, Yogi Vemana University, India
Abstract
This paper plans to develop a novel image compression model with four major phases. (i) Segmentation (ii) Feature Extraction (iii) ROI classification (iv) Compression. The image is segmented into two regions by Adaptive ACM. The result of ACM is the production of two regions, this model enables separate ROI classification phase. For performing this, the features corresponding to GLCM are extracted from the segmented parts. Further, they are subjected to classification via NN, in which new training algorithm is adopted. As a main novelty JA and WOA are merged together to form J-WOA with the aim of tuning the ACM (weighting factor and maximum iteration), and training algorithm of NN, where the weights are optimized. This model is referred as J-WOA-NN. This classification model exactly classifies the ROI regions. During the compression process, the ROI regions are handled by JPEG-LS algorithm and the non-ROI region are handled by wavelet-based lossy compression algorithm. Finally, the decompression model is carried out by adopting the same reverse process.
Subject
Decision Sciences (miscellaneous),Computational Mathematics,Computational Theory and Mathematics,Control and Optimization,Computer Science Applications,Modeling and Simulation,Statistics and Probability
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. An Automatic Recognition Method for Digital Instruments Based on Machine Vision;2022 IEEE 2nd International Conference on Mobile Networks and Wireless Communications (ICMNWC);2022-12-02