Abstract
Currently, considerable research has been done in vehicle type classification, especially due to the success of deep learning in many image classification problems. In this research, a system incorporating hybrid features is proposed to improve the performance of vehicle type classification. The feature vectors are extracted from the pre-processed images using Gabor features, a histogram of oriented gradients and a local optimal oriented pattern. The hybrid set of features contains complementary information that could help discriminate between the classes better, further, an ant colony optimizer is utilized to reduce the dimension of the extracted feature vectors. Finally, a deep neural network is used to classify the types of vehicles in the images. The proposed approach was tested on the MIO vision traffic camera dataset and another more challenging real-world dataset consisting of videos of multiple lanes of a toll plaza. The proposed model showed an improvement in accuracy ranging from 0.28% to 8.68% in the MIO TCD dataset when compared to well-known neural network architectures.
Subject
Decision Sciences (miscellaneous),Computational Mathematics,Computational Theory and Mathematics,Control and Optimization,Computer Science Applications,Modeling and Simulation,Statistics and Probability