Knowledge Discovery in Databases with Diversity of Data Types

Author:

Wu QingXiang1,McGinnity Martin1,Prasad Girijesh1,Bell David2

Affiliation:

1. University of Ulster at Magee, UK

2. Queen’s University, UK

Abstract

Data mining and knowledge discovery aim at finding useful information from typically massive collections of data, and then extracting useful knowledge from the information. To date a large number of approaches have been proposed to find useful information and discover useful knowledge; for example, decision trees, Bayesian belief networks, evidence theory, rough set theory, fuzzy set theory, kNN (k-nearest-neighborhood) classifier, neural networks, and support vector machines. However, these approaches are based on a specific data type. In the real world, an intelligent system often encounters mixed data types, incomplete information (missing values), and imprecise information (fuzzy conditions). In the UCI (University of California – Irvine) Machine Learning Repository, it can be seen that there are many real world data sets with missing values and mixed data types. It is a challenge to enable machine learning or data mining approaches to deal with mixed data types (Ching, 1995; Coppock, 2003) because there are difficulties in finding a measure of similarity between objects with mixed data type attributes. The problem with mixed data types is a long-standing issue faced in data mining. The emerging techniques targeted at this issue can be classified into three classes as follows: (1) Symbolic data mining approaches plus different discretizers (e.g., Dougherty et al., 1995; Wu, 1996; Kurgan et al., 2004; Diday, 2004; Darmont et al., 2006; Wu et al., 2007) for transformation from continuous data to symbolic data; (2) Numerical data mining approaches plus transformation from symbolic data to numerical data (e.g.,, Kasabov, 2003; Darmont et al., 2006; Hadzic et al., 2007); (3) Hybrid of symbolic data mining approaches and numerical data mining approaches (e.g.,, Tung, 2002; Kasabov, 2003; Leng et al., 2005; Wu et al., 2006). Since hybrid approaches have the potential to exploit the advantages from both symbolic data mining and numerical data mining approaches, this chapter, after discassing the merits and shortcomings of current approaches, focuses on applying Self-Organizing Computing Network Model to construct a hybrid system to solve the problems of knowledge discovery from databases with a diversity of data types. Future trends for data mining on mixed type data are then discussed. Finally a conclusion is presented.

Publisher

IGI Global

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advanced Issues of Knowledge Management, Knowledge Discovery, and Organizational Communication;Handbook of Research on Knowledge Management for Contemporary Business Environments;2018

2. Knowledge Discovery and Data Visualization;International Journal of Organizational and Collective Intelligence;2017-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3