Bitmap Join Indexes vs. Data Partitioning

Author:

Bellatreche Ladjel1

Affiliation:

1. Poitiers University, France

Abstract

Scientific databases and data warehouses store large amounts of data ith several tables and attributes. For instance, the Sloan Digital Sky Survey (SDSS) astronomical database contains a large number of tables with hundreds of attributes, which can be queried in various combinations (Papadomanolakis & Ailamaki, 2004). These queries involve many tables using binary operations, such as joins. To speed up these queries, many optimization structures were proposed that can be divided into two main categories: redundant structures like materialized views, advanced indexing schemes (bitmap, bitmap join indexes, etc.) (Sanjay, Chaudhuri & Narasayya, 2000) and vertical partitioning (Sanjay, Narasayya & Yang 2004) and non redundant structures like horizontal partitioning (Sanjay, Narasayya & Yang 2004; Bellatreche, Boukhalfa & Mohania, 2007) and parallel processing (Datta, Moon, & Thomas, 2000; Stöhr, Märtens & Rahm, 2000). These optimization techniques are used either in a sequential manner ou combined. These combinations are done intra-structures: materialized views and indexes for redundant and partitioning and data parallel processing for no redundant. Materialized views and indexes compete for the same resource representing storage, and incur maintenance overhead in the presence of updates (Sanjay, Chaudhuri & Narasayya, 2000). None work addresses the problem of selecting combined optimization structures. In this paper, we propose two approaches; one for combining a non redundant structures horizontal partitioning and a redundant structure bitmap indexes in order to reduce the query processing and reduce the maintenance overhead, and another to exploit algorithms for vertical partitioning to generate bitmap join indexes. To facilitate the understanding of our approaches, for review these techniques in details.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3