Physical Data Warehousing Design

Author:

Bellatreche Ladjel1,Mohania Mukesh2

Affiliation:

1. Poitiers University, France

2. IBM India Research Lab, India

Abstract

Recently, organizations have increasingly emphasized applications in which current and historical data are analyzed and explored comprehensively, identifying useful trends and creating summaries of the data in order to support high-level decision making. Every organization keeps accumulating data from different functional units, so that they can be analyzed (after integration), and important decisions can be made from the analytical results. Conceptually, a data warehouse is extremely simple. As popularized by Inmon (1992), it is a “subject-oriented, integrated, time-invariant, nonupdatable collection of data used to support management decision-making processes and business intelligence”. A data warehouse is a repository into which are placed all data relevant to the management of an organization and from which emerge the information and knowledge needed to effectively manage the organization. This management can be done using data-mining techniques, comparisons of historical data, and trend analysis. For such analysis, it is vital that (1) data should be accurate, complete, consistent, well defined, and time-stamped for informational purposes; and (2) data should follow business rules and satisfy integrity constraints. Designing a data warehouse is a lengthy, time-consuming, and iterative process. Due to the interactive nature of a data warehouse application, having fast query response time is a critical performance goal. Therefore, the physical design of a warehouse gets the lion’s part of research done in the data warehousing area. Several techniques have been developed to meet the performance requirement of such an application, including materialized views, indexing techniques, partitioning and parallel processing, and so forth. Next, we briefly outline the architecture of a data warehousing system.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3