Leveraging Unlabeled Data for Classification

Author:

Yang Yinghui1,Padmanabhan Balaji2

Affiliation:

1. University of California, Davis, USA

2. University of South Florida, USA

Abstract

Classification is a form of data analysis that can be used to extract models to predict categorical class labels (Han & Kamber, 2001). Data classification has proven to be very useful in a wide variety of applications. For example, a classification model can be built to categorize bank loan applications as either safe or risky. In order to build a classification model, training data containing multiple independent variables and a dependant variable (class label) is needed. If a data record has a known value for its class label, this data record is termed “labeled”. If the value for its class is unknown, it is “unlabeled”. There are situations with a large amount of unlabeled data and a small amount of labeled data. Using only labeled data to build classification models can potentially ignore useful information contained in the unlabeled data. Furthermore, unlabeled data can often be much cheaper and more plentiful than labeled data, and so if useful information can be extracted from it that reduces the need for labeled examples, this can be a significant benefit (Balcan & Blum 2005). The default practice is to use only the labeled data to build a classification model and then assign class labels to the unlabeled data. However, when the amount of labeled data is not enough, the classification model built only using the labeled data can be biased and far from accurate. The class labels assigned to the unlabeled data can then be inaccurate. How to leverage the information contained in the unlabeled data to help improve the accuracy of the classification model is an important research question. There are two streams of research that addresses the challenging issue of how to appropriately use unlabeled data for building classification models. The details are discussed below.

Publisher

IGI Global

Reference17 articles.

1. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., & Verkamo, A. I. (1995). Fast Discovery of Association Rules. In Advances in Knowledge Discovery and Data Mining, AAAI Press.

2. The usefulness of optimum experimental designs.;A.Atkinson;Journal of the Royal Statistical Society. Series A, (Statistics in Society),1996

3. Balcan, M., & Blum, A. (2005). A PAC-Style Model for Learning from Labeled and Unlabeled Data. In Proceedings of the 18th Annual Conference on Learning Theory.

4. Blum, A., & Mitchell, T. (1998). Combining labeled and unlabeled data with co-training. In Proceedings of the 1998 Conference on Computational Learning Theory.

5. Cluster Kernels for Semi-Supervised Learning.;O.Chapelle;Advances in Neural Information Processing Systems,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3