Actionable Knowledge Discovery

Author:

Cao Longbing1

Affiliation:

1. University of Technology Sydney, Australia

Abstract

Actionable knowledge discovery is selected as one of the greatest challenges (Ankerst, 2002; Fayyad, Shapiro, & Uthurusamy, 2003) of next-generation knowledge discovery in database (KDD) studies (Han & Kamber, 2006). In the existing data mining, often mined patterns are nonactionable to real user needs. To enhance knowledge actionability, domain-related social intelligence is substantially essential (Cao et al., 2006b). The involvement of domain-related social intelligence into data mining leads to domaindriven data mining (Cao & Zhang, 2006a, 2007a), which complements traditional data-centered mining methodology. Domain-related social intelligence consists of intelligence of human, domain, environment, society and cyberspace, which complements data intelligence. The extension of KDD toward domain-driven data mining involves many challenging but promising research and development issues in KDD. Studies in regard to these issues may promote the paradigm shift of KDD from data-centered interesting pattern mining to domain-driven actionable knowledge discovery, and the deployment shift from simulated data set-based to real-life data and business environment-oriented as widely predicted.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3