Emergence Index in Image Databases

Author:

Deb Sagarmay1

Affiliation:

1. Southern Cross University, Australia

Abstract

Images are generated everywhere from various sources. It could be satellite pictures, biomedical, scientific, entertainment, sports and many more, generated through video camera, ordinary camera, x-ray machine, and so on. These images are stored in image databases. Content-based image retrieval (CBIR) technique is being applied to access these vast volumes of images from databases efficiently. Some of the areas, where CBIR is applied, include weather forecasting, scientific database management, art galleries, law enforcement, and fashion design. Initially image representation was based on various attributes of the image like height, length, angle and was accessed using those attributes extracted manually and managed within the framework of conventional database management systems. Queries are specified using these attributes. This entails a high-level of image abstraction (Chen, Li & Wang, 2004). Also there was feature-based object-recognition approach where the process was automated to extract images based on color, shape, texture, and spatial relations among various objects of the image. Recently combining these two approaches, efficient image representation and query-processing algorithms, have been developed to access image databases. Recent CBIR research tries to combine both of these above mentioned approach and has given rise to efficient image representations and data models, query-processing algorithms, intelligent query interfaces and domain-independent system architecture. As we mentioned, image retrieval can be based on lowlevel visual features such as color (Antani, Rodney Long & Thoma, 2004; Deb & Kulkarni, 2007; Deb & Kulkarni, 2007a; Ritter & Cooper, 2007; Srisuk & Kurutach, 2002; Sural, Qian & Pramanik, 2002; Traina, Traina, Jr., Bueno, & Chino, 2003; Verma & Kulkarni, 2004), texture (Antani et al., 2004; Deb & Kulkarni, 2007a; Zhou, Feng & Shi, 2001), shape (Ritter & Cooper, 2007; Safar, Shahabi & Sun, 2000; Shahabi & Safar, 1999; Tao & Grosky, 1999), high-level semantics (Forsyth et al., 1996), or both (Zhao & Grosky, 2001). But most of the works done so far are based on the analysis of explicit meanings of images. But image has implicit meanings as well, which give more and different meanings than only explicit analysis provides. In this paper we provide the concepts of emergence index and analysis of the implicit meanings of the image which we believe should be taken into account in analysis of images of image or multimedia databases.

Publisher

IGI Global

Reference23 articles.

1. Content-based image retrieval. Large Biomedical Image Archives;S.Antani;Medinfo,2004

2. Cariani, P. (1992). Emergence and artificial life. In C. Langton, C. Taylor, J. D. Farmer, & S. Rasmussen (Eds.), Artificial life II (pp. 775-797). Reading: Addision-Wesley.

3. Chen, Y., Li, J., & Wang, J. Z. (2004). Machine learning and statistical modeling approaches to image retrieval. New York: Kluwer Academic Publishers.

4. Deb, S., & Kulkarni, S. (2007). Human perception based image Retrieval using emergence index and fuzzy similarity measure. In Proceedings of the Third International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP07) (pp. 359-363). Melbourne, Australia.

5. Deb, S., & Kulkarni, S. (2007a). Content-based image retrieval with emergence index using fuzzy logic. In Proceedings of the 5th International Conference on Advances in Mobile Computing and Multimedia (MoMM2007). Jakarta, Indonesia.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3