Demand Forecast of Railway Transportation Logistics Supply Chain Based on Machine Learning Model

Author:

Wang Pengyu1,Zhang Yaqiong1,Guo Wanqing2

Affiliation:

1. Zhengzhou Railway Vocational and Technical College, China

2. SIAS University, China

Abstract

The deep learning method based on long short-term memory (LSTM), gated recurrent unit (GRU), and bidirectional LSTM (Bi-LSTM) was constructed by researching the factors affecting railway transportation logistics. Moreover, a simulation study on Tianjin Station was conducted. The deep learning model suitable for the logistics demand forecasting of Tianjin Station was established, and the changing trend of logistics supply chain demand in Tianjin Station in the future was analyzed. Moreover, a strategy for railway construction and regional cooperation was proposed. In this study, three deep learning neural networks, namely LSTM, GRU, and Bi-LSTM, were used to construct a demand forecasting model for the logistics supply chain in Tianjin Station. Bi-LSTM, which has bidirectional storage performance and the highest prediction accuracy, is superior to the traditional neural network structure in terms of period and fluctuation.

Publisher

IGI Global

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3