Multilabel Classifier Chains Algorithm Based on Maximum Spanning Tree and Directed Acyclic Graph

Author:

Zhao Wenbiao1,Li Runxin1ORCID,Shang Zhenhong1

Affiliation:

1. Faculty of Information Engineering and Automation, Kunming University of Science and Technology, China

Abstract

The classifier chains algorithm is aimed at solving the multilabel classification problem by composing the labels into a randomized label order. The classification effect of this algorithm depends heavily on whether the label order is optimal. To obtain a better label ordering, the authors propose a multilabel classifier chains algorithm based on a maximum spanning tree and a directed acyclic graph. The algorithm first uses Pearson's correlation coefficient to calculate the correlation between labels and constructs the maximum spanning tree of labels, then calculates the mutual decision difficulty between labels to transform the maximum spanning tree into a directed acyclic graph, and it uses topological ranking to output the optimized label ordering. Finally, the authors use the classifier chains algorithm to train and predict against this label ordering. Experimental comparisons were conducted between the proposed algorithm and other related algorithms on seven datasets, and the proposed algorithm ranked first and second in six evaluation metrics, accounting for 76.2% and 16.7%, respectively. The experimental results demonstrated the effectiveness of the proposed algorithm and affirmed its contribution in exploring and utilizing label-related information.

Publisher

IGI Global

Subject

General Computer Science

Reference30 articles.

1. Learning multi-label scene classification

2. Cheng, W., Hüllermeier, E., & Dembczynski, K. J. (2010). Bayes optimal multilabel classification via probabilistic classifier chains. In Proceedings of the 27th International Conference on Machine Learning (ICML-10). Semantic Scholar.

3. A kernel method for multi-labelled classification.;A.Elisseeff;Advances in Neural Information Processing Systems,2001

4. A Comparison of Alternative Tests of Significance for the Problem of $m$ Rankings

5. Multilabel classification via calibrated label ranking

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3