Affiliation:
1. Nanjing University of Posts and Telecommunications, Nanjing, China
Abstract
Mobility patterns mined from released trajectories can help to allocate resources and provide personalized services, although these also pose a threat to personal location privacy. As the existing sanitization methods cannot deal with the problems of location privacy inference attacks based on privacy-sensitive sequence pattern networks, the authors proposed a method of sanitizing the privacy-sensitive sequence pattern networks mined from trajectories released by identifying and removing influential nodes from the networks. The authors conducted extensive experiments and the results were shown that by adjusting the parameter of the proportional factors, the proposed method can thoroughly sanitize privacy-sensitive sequence pattern networks and achieve the optimal values for security degree and connectivity degree measurements. In addition, the performance of the proposed method was shown to be stable for multiple networks with basically the same privacy-sensitive node ratio and be scalable for batches of networks with different sensitive nodes ratios.
Subject
Hardware and Architecture,Software