A Method of Sanitizing Privacy-Sensitive Sequence Pattern Networks Mined From Trajectories Released

Author:

Zhang Haitao1,Zhu Yunhong1

Affiliation:

1. Nanjing University of Posts and Telecommunications, Nanjing, China

Abstract

Mobility patterns mined from released trajectories can help to allocate resources and provide personalized services, although these also pose a threat to personal location privacy. As the existing sanitization methods cannot deal with the problems of location privacy inference attacks based on privacy-sensitive sequence pattern networks, the authors proposed a method of sanitizing the privacy-sensitive sequence pattern networks mined from trajectories released by identifying and removing influential nodes from the networks. The authors conducted extensive experiments and the results were shown that by adjusting the parameter of the proportional factors, the proposed method can thoroughly sanitize privacy-sensitive sequence pattern networks and achieve the optimal values for security degree and connectivity degree measurements. In addition, the performance of the proposed method was shown to be stable for multiple networks with basically the same privacy-sensitive node ratio and be scalable for batches of networks with different sensitive nodes ratios.

Publisher

IGI Global

Subject

Hardware and Architecture,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3